
Please use this identifier to cite or link to this item:
https://scholar.dlu.edu.vn/handle/123456789/978
Title: | A Novel Valued Tolerance Rough Set and Decision Rules Method for Indoor Positioning Using WiFi Fingerprinting | Authors: | Dương, Bảo Ninh He, Jing Thi, Luong Nguyen Nguyễn, Hữu Khánh Lee, Seon-Woo |
Keywords: | RSS; WiFi fingerprinting; decision rules; indoor positioning; rough set; valued tolerance | Issue Date: | 2022-07-30 | Journal: | Sensors (Basel, Switzerland) | Abstract: | In recent years, due to the ubiquitous presence of WiFi access points in buildings, the WiFi fingerprinting method has become one of the most promising approaches for indoor positioning applications. However, the performance of this method is vulnerable to changes in indoor environments. To tackle this challenge, in this paper, we propose a novel WiFi fingerprinting method that uses the valued tolerance rough set theory-based classification method. In the offline phase, the conventional received signal strength (RSS) fingerprinting database is converted into a decision table. Then a new fingerprinting database with decision rules is constructed based on the decision table, which includes the credibility degrees and the support object set values for all decision rules. In the online phase, various classification levels are applied to find out the best match between the RSS values in the decision rules database and the measured RSS values at the unknown position. The experimental results compared the performance of the proposed method with those of the nearest-neighbor-based and the random statistical methods in two different test cases. The results show that the proposed method greatly outperforms the others in both cases, where it achieves high accuracy with 98.05% of right position classification, which is approximately 50.49% more accurate than the others. The mean positioning errors at wrong estimated positions for the two test cases are 1.71 m and 1.99 m, using the proposed method. |
URI: | https://scholar.dlu.edu.vn/handle/123456789/978 | DOI: | 10.3390/s22155709 | Type: | Bài báo đăng trên tạp chí quốc tế (có ISSN), bao gồm book chapter |
Appears in Collections: | Tạp chí (Khoa Công nghệ thông tin) |
Show full item record
CORE Recommender
SCOPUSTM
Citations
10
6
Last Week
0
0
Last month
checked on Feb 13, 2025
Page view(s)
38
Last Week
0
0
Last month
5
5
checked on Feb 18, 2025
Google ScholarTM
Check
Altmetric
Altmetric
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.