Please use this identifier to cite or link to this item: https://scholar.dlu.edu.vn/handle/123456789/497
DC FieldValueLanguage
dc.contributor.authorGuo, Fengen_US
dc.contributor.authorPhạm, Tiến Sơnen_US
dc.date.accessioned2021-08-23T04:19:06Z-
dc.date.available2021-08-23T04:19:06Z-
dc.date.issued2020-
dc.identifier.urihttps://scholar.dlu.edu.vn/handle/123456789/497-
dc.description.abstractIn this paper, we consider the problem of identifying the type (local minimizer, maximizer or saddle point) of a given isolated real critical point c, which is degenerate, of a multivariate polynomial function f. To this end, we introduce the definition of faithful radius of c by means of the curve of tangency of f. We show that the type of c can be determined by the global extrema of f over the Euclidean ball centered at c with a faithful radius. We propose algorithms to compute faithful radius of c and determine its type.en_US
dc.language.isoenen_US
dc.publisherElsevieren_US
dc.relation.ispartofJournal of Symbolic Computationen_US
dc.subjectPolynomial functionsen_US
dc.subjectCritical pointsen_US
dc.subjectDegenerateen_US
dc.subjectTangency varietiesen_US
dc.subjectTypesen_US
dc.titleOn types of degenerate critical points of real polynomial functionsen_US
dc.typeJournal articleen_US
dc.relation.publicationJournal of Symbolic Computation 99 (2020)en_US
dc.identifier.doi10.1016/j.jsc.2019.03.004en_US
dc.relation.doi0747-7171en_US
dc.description.volume99en_US
dc.description.pages108-126en_US
dc.type.reportBài báo đăng trên tạp chí quốc tế (có ISSN), bao gồm book chapteren_US
item.languageiso639-1other-
item.grantfulltextrestricted-
item.fulltextWith Fulltext-
crisitem.author.deptFaculty of Mathematics and Computer Science-
crisitem.author.orcidhttps://orcid.org/0000-0003-3368-304X-
crisitem.author.parentorgDalat University-
Appears in Collections:Tạp chí (Khoa Toán - Tin học)
Files in This Item:
File Description SizeFormat
PHAMTS-2020-1-1.pdf697.35 kBAdobe PDFView/Open
Show simple item record


CORE Recommender

SCOPUSTM   
Citations 5

2
Last Week
0
Last month
0
checked on Feb 29, 2024

Page view(s) 1

649
Last Week
13
Last month
16
checked on Mar 2, 2024

Download(s) 10

22
checked on Mar 2, 2024

Google ScholarTM

Check

Altmetric


Altmetric




Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.